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NEW CONVERGENCE RESULTS ON THE GENERALIZED 
RICHARDSON EXTRAPOLATION PROCESS GREP(1) 

FOR LOGARITHMIC SEQUENCES 

AVRAM SIDI 

ABSTRACT. Let a(t) - A + pc(t) E•=0=o 3iti as t -+ 0+, where a(t) and Wp(t) are 
known for 0 < t < c for some c > 0, but A and the 3i are not known. The 
generalized Richardson extrapolation process GREP(1) is used in obtaining 
good approximations to A, the limit or antilimit of a(t) as t -- 0+. The 

approximations A$) to A obtained via GREP(1) are defined by the linear 

systems a(t) = A) + p~(tl) En it, l = j, j + 1, ... , j + n, where {t1}0"o 
is a decreasing positive sequence with limit zero. The study of GREP(1) for 

slowly varying functions a(t) was begun in two recent papers by the author. 
For such a(t) we have p(t) at 6 as t - 0+ with 6 possibly complex and 
6 0, -1, -2,.... In the present work we continue to study the convergence 
and stability of GREP(1) as it is applied to such a(t) with different sets of 
collocation points t1 that have been used in practical situations. In particular, 
we consider the cases in which (i) t1 are arbitrary, (ii) limi-,+ tt+l/t = 1, (iii) 

tl 
1 -cl- as 1 - 00 for some c, q > 0, (iv) tl+1/tl w E (0, 1) for all 1, (v) 

lim,,•o 
tl+1/tl = w (0, 1), and (vi) tl+l/tl = w E (0, 1) for all 1. 

1. INTRODUCTION AND GENERAL BACKGROUND 

In two recent papers Sidi [Si6] and Sidi [Si7] we began a theoretical investigation 
of the convergence and stability of GREP(1), the simplest case and prototype of 
the generalized Richardson extrapolation process GREP(m) due to the author, see 
Sidi [Sil]. Here m is a positive integer. GREP(m) is a very effective extrapolation 
method that is used in accelerating the convergence of a very large family of infinite 
sequences that arise from and/or can be identified with functions A(y) that belong 
to a certain class of functions denoted F(m). 

In the present work we continue the investigation of [Si6] and [Si7] by adding 
various theoretical results pertaining to the application of GREP(1) to functions 
A(y) E F(1) that vary slowly. What is meant by slowly varying A(y) will become 
clear shortly. 

We recall that A(y) E F(1) if there exist a constant A and a function 3(y) such 
that 

(1.1) A(y) = A + q(y)/(y), y E (0, b] for some b > 0, 

where y can be a continuous or discrete variable, and !3((), as a function of the 
continuous variable ?, is continuous in [0, ] for some ( > 0 and has a Poincare-type 
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TABLE 1. The Romberg table. 

A(') A(o) 
A( 
A(0 

A2) 
A(3 

Ao2) 
A(1) Ao) 0 2 3 

asymptotic expansion of the form 

00 

(1.2) ZP() iir as - 0+, for some fixed r > 0. 
i=O 

We also recall that A(y) E F() if the function B(t) - P(tl/r), as a function of the 
continuous variable t, is infinitely differentiable in [0, r]. (Therefore, in the variable 
t, B(t) E C[0, t] for some t^ > 0 and (1.2) reads B(t) E'- o % iti as t -- 0+.) 

We assume that the functions A(y) and 0(y) are computable hence known for 
y E (0, b] (keeping in mind that y may be discrete or continuous depending on the 
situation) and that the constant r is known. The aim is to find (or approximate) 
A that is limy--,,o+ A(y) when this limit exists and the antilimit of A(y) otherwise. 

Approximations to A can be obtained by GREP(1) that is defined via the linear 
systems 

n-1 

(1.3) A(yj) = A ) + 
?(yz) yir, I = j, j + ,..., +n, 

i=0 

where {yj} C (0, b] such that yo > Yj > Y2 > 
' 

, and limol,, y = 0. Here Aj) is 
the approximation to A and Pi are additional auxiliary unknowns. 

The approximations A(j) can be arranged in a two-dimensional array called the 
Romberg table (see Table 1). 

Two limiting processes pertaining to the Aj) are of importance: (i) Process I, 
in which n is held fixed and j -, oo, and (ii) Process II, in which j is held fixed and 
n -- oc. Thus, Process I concerns the convergence of the columns in the Romberg 
table, while Process II concerns the convergence of the diagonals. 

If we set t = yr, a(t) = A(y), p(t) = 0(y), and t1 = yU', 1 = 0, 1,..., then, 
provided p(tz) $ 0, 1 = 0, 1,... , which we assume throughout, we can express Aj) 
as in 

D(1.4) A = 
a(t)/p(t)} (1.4) A(= n 

D {1/p(t)} 

where D( {g(t)} denotes the divided difference of the function g(t) over the set of 
points {tj, tj+l,..., tj+,} and is thus given by 

n n 

(1.5) 

D(J){g(t)}_ 

= cO)g=(tj+i); c )1 
, 

i 0,1,... ,n. 
i=0 i tj+i - tj+k 

kIi 
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From (1.4) and (1.5) it is clear that A( ) can also be expressed as in 

(1.6) A) = y a(tj+iy); = /(t+i) 0,1,... , 
i=0 

Obviously, En=o 
- 

= 1. 
A quantity that is of special importance in the stability analysis of GREP(1) is 

n 
1n CU.) 

(1.7) = ' I 1p(t)= I o(J+i 
•=o~~ 

I (t+,) 

Of course, r(j) 1. We recall that F(j) determines the rate at which errors (round- 
off or other) in the a(tj) propagate into A(j). We also recall that if supj (j) < c00 
with n fixed, then the sequence {A}~})=0 is stable, i.e., Process I is stable. Simi- 

larly, if sup (j) < oc with j fixed, the sequence {A(j) }j'0 is stable, i.e., Process 
II is stable. 

The Aj) and F ) can be computed recursively in a very economical fashion by 
the W-algorithm of Sidi [Si4] and [Si6] as follows: 

1. Set M(j) = a(tj)/cp(tj), N(j)- 1/ p(tj), and H(j) = (1)N) j - 0, 
1, .. 

2. Compute M(j), N(j), and H(j) recursively from 

(1.8) M -M N) = N - N and S -I 
-n - N-1and 

n 

tj+n 
-tj 'j= 0 ' - ,,.. 

3. Set 

(1.9) A Mj) and 
FU) - 

NH() - N 
Surprisingly, GREP(1) is quite amenable to rigorous and refined analysis, and 

the conclusions that we draw from the study of GREP(1) are relevant to GREP(m) 
with arbitrary m, in general. It is important to note that the analytic study of 

GREP(1) is made possible by the divided difference representations of A$) and F ) 
that are given in (1.4) and (1.7) respectively. With the help of these we are able 
to produce results that are optimal or nearly optimal in many cases. We must also 
add that not all problems associated with GREP(1) have been solved, however. In 
particular, various problems concerning Process II are still open. 

The slowly varying functions A(y) we alluded to above are those for which 
00 

(1.10) p(t)=tH(t); 6#0,1-1,)-2,...., H(t)rEhiti as t-0+, 
ho--0. i=0 

Here 6 can be complex in general. Thus, A(y) has the asymptotic behavior A(y) r 
A + hoyy as y -- 0+, for some y that is related to 6 through y = r6. We note 
that a sufficient condition for (1.10) to hold is that H(t) E C'"[0, t~ for some t > 0, 
although this condition is not necessary in general. In the next section we present 
examples of such A(y) that arise from some classes of infinite integrals and series. In 
particular, they arise very naturally from convergent or divergent infinite sequences 
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that behave logarithmically, as has been shown in [Si6]. We recall that it is very 
difficult to accelerate the convergence of such sequences, the source of the difficulty 
being the instability of the extrapolation processes. 

In this work we aim at presenting a detailed convergence and stability analysis 
of GREP(1) for slowly varying A(y) = a(t) and different choices of the tj. As will 
be seen later, some of these choices give rise to instability, while others do not. 
In particular, in Section 4 we deal with the case in which the t1 are arbitrary. In 
Section 5 we consider the case in which 

limi-,, 
(tl+I/t,) = 1 in general and t1 r cl-q 

as 1 -- oc for some c > 0 and q > 0. In Section 6 we look at the cases in which 

limi,,(ti+l/ti) = w for some w E (0, 1). Finally, in Section 7 we analyze the case 
in which tl+l < wtl for all 1, again for some w E (0, 1). These choices of the tj 
are the ones most commonly used in applications. Thus, by drawing the proper 
analogies, the results of this chapter and the next apply very naturally to the D(1)-, 
d(1)-transformations of Levin and Sidi [LS], and to a new sequence transformation 
that we denote the d(m)-transformation. 

We shall come back to these transformations in Section 8, where we shall actually 
show how the conclusions drawn from the study of GREP(1) given here can be used 
to enhance their performance in finite-precision arithmetic. 

In the next section we give some technical preliminaries that will be of use in 
the remainder of this work. 

2. EXAMPLES OF SLOWLY VARYING a(t) 

We now present practical examples of functions a(t) that vary slowly. 

Example 2.1. If f(x) r- 
=0o 

Vidx-i as x -0 oc, for vo $ 0 and for some possibly 
complex -y 5 -1, 0, 1, 2,... , then we know from Theorem 4.1 in [Si7] that 

F(x) = f (t) dt = I[f + xf (x)g(x); g(x) gix- as x - 00 o, go 0. 
Jai=0 

This means that F(x) + a(t), I[f] - A, x-1 -+ t, xf(x) -, pc(t) with pc(t) as 
above and with 6 = -1y- 1. This is valid both when fa" f (t) dt converges and 
when it diverges. In the former case I[f] = fa7 f(t) dt, while in the latter I[f] is 

the Hadamard finite part of 
a, 

f (t) dt. The use of GREP(1) as in this example 
(with tj = 1/xi for an increasing unbounded sequence {xi}) results in the Levin-Sidi 

D(1)-transformation for infinite integrals. 

Example 2.2. If an 
=0 

vine-i as n -* oo, for vo = 0 and for some possibly 
complex y , -1,0, 1, 2,... , then we know from Theorem 4.1 of [Si6] that 

n oo 

An = 
ak 

= 
S({ak}) + 

nang(n); g(n) -- gin-i as n -- , 90go O. 
k=l i=0O 
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methods known. The convergence and stability of the Levin transformations were 
analyzed in the papers Sidi [Si2] and [Si3], whose results were summarized in Sidi 
[Si5]. 

Example 2.3. If 
an -=o VinY-i/m as n - 00c, for vo0 0 and for some possibly 

complex y7 = -1, 0, 1, 2,... , and a positive integer m > 1, then we can proceed as 
in the proof of Theorem 4.1 in [Si6] to show that 

n 00 

An = ak = S({ak}) + nang(n); g(n) gin-i/m as n -~ oc, go 0. 
k=l i=O 

This means that An *- a(t), S({ak}) +-+ A, n-1/m +-+ t, nan +-+ p(t) with po(t) 
as above and with 6 = -y - 1. This is valid when C1 an converges and when 
it diverges. In the former case S({ak}) = l an while in the latter 

S({ak}) is 
the antilimit of 

nCl 
an. The use of GREP(1) as in this example (with tl 

= 1/R1 
for an increasing sequence of integers {RI}) obviously results in a new bona fide 
sequence transformation that we now denote the d(m')-transformation. Numerical 
experiments show that this is a very effective convergence acceleration method for 
the type of infinite series considered here. Of course, the j(1)-transformation is 
nothing but the d(1)-transformation. 

3. TECHNICAL PRELIMINARIES 

We start by deriving an error formula for Aj) that has been stated and proved 
as Lemma 3.1 in [Si6]. 

Lemma 3.1. The error in A(j) is given by 

(3.1) B - A (t)} B(t) 
(tl/r) (3.1) A)-A B(t) 

In some of our analysis we assume the functions p(t) and B(t) to be differentiable, 
while in others no such requirement is imposed. Obviously, the assumption in the 
former case is quite strong, and this makes some of the proofs easier. 

The following simple result on A() will become useful shortly. 

Lemma 3.2. If B(t) E C'[0, tj] and 0b(t) -- 1/(t) E C00(0, tj], then for any 
nonzero complex number c, 

S- A = [cB(n) 
(t/n,1)] 

+ i?[cB(n) (t?n,2)] 
(3.2) 

n R [c(n") (t"7n,1)] 1 i n[c'(n) (tJn,2)] 
for some 

tn,1, tjn, t1, tj2 1tJ+n ) inl n,21 jn~ll jn,2 (jnt) 

Proof. It is known that if f E Cn[a, b] is real and a < xo < x 
<_ 

... 
<_ 

zx b, then 
the divided difference f[xo,xl, ... , xn] satisfies 

f[xo, x, ... ,n] = f() for some C E (o, 
Xn). n! 
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Applying this to the real and imaginary parts of the complex-valued function u(t) E 
C"(0, tj ), we have 

(3.3) 

D(){u(t)} = [u(n)(tj,,1) 
+ i!U(n)(tjn,2) , for some tjn,l, tjn,2 E (tj+n,tj). 

The result now follows. O 

The introduction of the constant c in (3.2) will serve us in the proof of Theorem 
4.1 in the next section. 

Note that in many of our problems it is known that B(t) E C"~[0, t], while 

4(t) E C' (0, t~ only, for some t > 0. That is to say, B(t) has an infinite number of 
derivatives at t = 0 while 0(t) does not. This is an important observation. 

Useful simplifications take place for the case ?p(t) = t that has been studied most 
extensively in Bulirsch and Stoer [BS] and Laurent [Laure]. The recursion relation 
for the A$) in Lemma 3.3 was first given in [BS], for example. 

Lemma 3.3. If p(t) = t, then the A ) and the F$) can be computed recursively 
from 

(3.4) A(j) = a(tj) and F() = 1, j = 0,1,... 

A~ tjA(j+') t7(i+)+ 
A -1and 

Fr(j) 
tj(J-+l)+ 

tj+n(j)- 

A) -- - t +,A and n-1 
n 

tj - tj+n 
n 

tj - tj+n 

j=-0,1,..., n=-1,2,.... 
Lemma 3.4. If p(t) = t, then 

(3.5) AO) - A = (-1)"D$j){B(t)} ( tj?i 
(i=0 

Thus, for some 
tn,1, t,2 E (tj+n, tj), we have 

(3.6) A ) 
- 

A (-1) [B(n)(tn'l)] 
+ 

it[B(n)(t',2)] (3.6) A ) - A = (-1)n i 
n!ti=0 (i= 

The proofs are achieved by invoking the fact that 

(3.7) D() {t-1} = (-1)n tj+i 

We leave the details to the reader. 
Obviously, by imposing suitable growth conditions on B(n)(t), Lemma 3.4 can 

be turned into powerful convergence theorems. 
The last result of this section is a slight refinement of a result of [Sil] concerning 

Process I as it applies to GREP(1). 

Theorem 3.5. Let supj = An < 0o and q(yj+l) = O(q(yj)) as j -* oc. Then, 
with n fixed, 

(3.8) A$) - A = 

O(p(tj)t.+4) 
as j - oo, 

where on+, is the first nonzero fi with i > n. 
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Proof. Using in (3.1) the fact that D 
{(n{ 

cti } = 0 for arbitrary constants 

c- we first have 
n n-1i 

(3.9) A) i- A= 0 k- u(t3+t)]; u(t)= Zf0kt. 
i=O k=O 

The result now follows by taking moduli on both sides and realizing that B(t) - 
u(t) r -n+t~n+- as t --+ 0+ and recalling that tj > tj+l > tj+2 > ... . We leave 
the details to the reader. O 

Note that Theorem 3.5 does not assume that B(t) and p(t) are differentiable. It 
does, however, assume that Process I is stable. 

As we shall see in the sequel, (3.8) holds under appropriate conditions on the tl 
even when Process I is clearly unstable. 

In connection with Process I we would like to remark that, under suitable con- 
ditions we can obtain a full asymptotic expansion for A ) - A as j -- oo. If we 
define 

D(3.10) 

D 
{tk} , k = 0, 1,..., 

n,k 
=D(j){1/p(t)l} 

and recall that D(j) {tk} = 0, for k = 0, 1,... , n - 1, then this expansion assumes 
the simple and elegant form 

00 

(3.11) AUj) - A Z a3sk as -- oo. 
k=n 

If )3n+ is the first nonzero fi with i > n, then Aj) - A also satisfies the asymptotic 
equality 

(3.12) A ) - A 3n+ ,n+~ as j -- 00. 

Of course, all this will be true provided that (i) (j)kn 
is an asymptotic se- 

quence as j - 
co, i.e., 

limj-oo (j) 41(j) = 0 for all k > n, and (ii) A(j) - A - 

k=n P ,(j)k 
= O(4j)) as j --+ o, for each s > n. In the next sections we will 

aim at such results whenever possible. We will actually show that they are possible 
in most of the cases we treat. 

We close this section with the well-known Hermite-Gennochi formula for divided 
differences that will be used later. 

Lemma 3.6 (Hermite-Gennochi). Let f(x) be in Cn0[a, b], and let x0, x1,... , Xn be 
all in [a, b]. Then 

f[xo,X1,.lx2] T 
i= 

1 ...d 2, 
J7 ( ii=O 

where 

n n 

Tn 
= 

((1, 
... 

, 
n)'0 

:_ 

I i 1, i = 1, .. . , n, Ei 
<_ 

1}; Co = 1 - ii 
-. i=1 i=1 
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For a proof of this lemma see, e.g., Atkinson [A]. Note that the argument 
z = 

-i=o 
iZi Of f(n) above is actually a convex combination of x0, xl,... 

,Xn since 0 i < 1, i = 0,1,... , n, and En =i = 1. If we order the 
xi 

such that 

xo < x1 < ... < Xn, then z e [xo,xn] C [a, b]. 

4. ANALYSIS WITH ARBITRARY tl 

We start with the following surprising result that holds for arbitrary {tl }. (Recall 
that so far the t1 satisfy only to > tl > ... > 0 and liml,,o t1 = 0.) 

Theorem 4.1. Let ?p(t) = t6H(t), where 6 is in general complex and 6 = 0, -1, 
-2,... , and H(t) E C' [0, t] for some t > 0 with ho - H(O) $ 0. Let also 

B(t) e C'[0, t , and let Pn+, be the first nonzero pi with i > n in (1.2). Then, 
provided n > -R6, we have 

(4.1) A) - A = O(cp(tj)t~") as j --* oo. 

Consequently, if n > -T6, we have 
limj_-- 

A) = A. All this is valid for arbitrary 

Proof. By the assumptions on B(t) we have 

B(n)(t) i(i - 1) (i - n + 1)0,ti-n as t 
--0+, i=n+p 

from which 

(4.2) B(n)(t) ~ 
(p + 1)n3n+,tzt as t -- 0+, 

and by the assumptions on ?p(t) we have for /(t) - 1/(t) 

n (n) 

n)(t) 
= 

(t-K)(k)[1/H(t)](n-k) (t)(n)/H(t) (t- 5) /ho as t 

-- 

0+, 
k=O 

from which 

(4.3) V)(n)(t) (-1)nho1(6)nt-6-n (1)n(6),•n(t)t-n 
as t - 0 +. 

Also, Lemma 3.2 is valid for all sufficiently large j under the present assumptions 
on B(t) and p(t), since tj < t for all sufficiently large j. Substituting (4.2) and 

(4.3) in (3.2) with Icl= 1 there, we obtain 

(4.4) 
A2) 

- A- 
+ 

(-1)n(p 
+ 1) 

[sf(c~3n+,) + 
o(1)](tjn,l)- 

+ i 
[a(C/n+,~) 

+ 
(1)](tin,2 x as - 00, 

[•ajn,1 
+ 

o(1)](tin,1)-i) 

-n + i 
[atjn,2 

+O(1)l(t"n,2)-R6-n 
with 

aj,s -= cho-'(6)n(tn,s)-'i6 and the o(1) terms uniform in c, Ic = 1. Here 
we have also used the fact that 

limji+•o 
tin,s = 

limj__0, 
t 
jn,s 

= 0. Next, by 0 < 

n,s < t and ? 0, it follows that 
(t>n,)" 

? t . This implies that the numerator 
of the quotient in (4.4) is O(t') as j -s -+, uniformly in c, Icl = 1. As for 

the denominator, we start by observing that a = ho1(6), : 0. Therefore, either 
Ra =, 0 or Qa = 0, and we assume without loss of generality that Ra : 0. If we 
now choose c = 

(tn,1)i'6, 
we obtain ajn,1 

= a and hence Rayjn,1 = Ra O0, as jn,) 
a6 

we obtain ajn~l 



CONVERGENCE RESULTS FOR LOGARITHMIC SEQUENCES 1577 

a result of which the modulus of the denominator can be bounded from below by 
Ra + o(1) I (tn,1)- 

-n 
, which in turn is bounded below by I a + o(1)I t •-n since 

<t',s < tj and R5 + n > 0. The result now follows by combining everything 
in (4.4) and by invoking t0 = O(p(t)) as t -* 0+ that follows from p(t) . hot6 as 
t -- 0+. O 

Theorem 4.1 implies that the column sequence {A(nJ) }0 converges to A if n 

-WhS, and it also gives an upper bound on the rate of convergence through (4.1). 
The fact that convergence takes place for arbitrary {tl } and that we are actually 
able to prove that it does is quite unexpected. 

By restricting {tz} only slightly in Theorem 4.1, we can show that A(J)-A has the 
full asymptotic expansion given in (3.11) and, as a result, satisfies the asymptotic 
equality of (3.12) as well. We start with the following lemma that turns out to be 
very useful in the sequel. 

Lemma 4.2. Let g(t) = teu(t), where 0 is in general complex and u(t) E C0[0, t~ 
for some t > 0. Pick the tl to satisfy, in addition to tl+1 < t, 1 = 0, 1,... , also 

tl+1 > vtj for all sufficiently large 1 with some v E (0, 1). Then the following are 
true: 

(i) The nonzero members of {DJ){te+i}}~o form an asymptotic sequence as 

(ii) DJ) {g(t)} has the bona fide asymptotic expansion 
00 

(4.5) D~j){g(t)l} - *giD$){t&?+i} as j c-+o; gi = u(')(0)/i!, i = 0,1,...I 
i=O0 

where the star on the summation means that only those terms for which 

Dn(){t+i } O, i.e., for which 0 + i = 0, 1,... , n - 1, are taken into ac- 
count. 

Remark. The extra condition t1+l > vtl for all large 1 that we have imposed on the 
ti is satisfied, e.g., when liml,,(tz+l/ti) = A for some A E (0, 1], and such cases 
are considered further in the next sections. 

Proof. Let a be in general complex and a 0, 1,..., n - 1. Denote 
(n) 

= M for 
simplicity of notation. Then, by (3.3), for any complex number c such that Icl = 1, 
we have 

cD(j) {ta} = R [cM(tjn,1),-n] + iQ [cM(tjn,2)-n] 
(4.6) some t,, ( for some tjn,1, tjn,2 G (tj+nitj)i 

from which we also have 

(4.7) ID)f{tf}l > max{lR [cM(tjn,1)a-n]|1, I [cM(tj,2a,-n] I n_, [j , 

Since M =, 0, we have either RM =, 0 or 
.aM 

=0. Assume without loss of 
generality that RM 0 and choose c = 

(tn,lj)-i'a. 
Then R~[cM(tj,,1)a-n] 

(RM)(tj,1)o-"n and hence 

(4.8) ID(){to}l > IRM(tji,l)-n > RMI min (t-n). 
tG[tj+n,tj] 
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Invoking in (4.8), if necessary, also the fact that tj+, > vtj that is implied by the 
conditions on the tj, we obtain 

(4.9) 
ID(J){t)} > C? 

) a-n for all large j, with some constant C > 0. 

We can similarly show from (4.6) that 

(4.10) D(j) {to~}l ? 

C• 
~- for all large j, with some constant O(n) > 0. 

The proof of part (i) can now be achieved by using (4.9) and (4.10). 
To prove part (ii) we need to show (in addition to part (i)) that, for any integer 

s for which D() {toe+} $ 0, i.e., for which 0 + s 0, 1,... , n - 1, there holds 

s-1 

(4.11) D(j){g(t)} - giD(j){to+i} = O (D(){to+}) as j -+ oo. 
i=0 

Now g(t) = 1 g't'+i + vs(t)to+s , where vs(t) E C?"[0, ti. 
As a result, 

s-1 

(4.12) Di) {g(t)} - EgiDj) {te+i} = D() (v,(t)te+s} 
i=O 

Next, by (3.3) and by the fact that 

[vs(t)t?+s]() [v (t)]n-i)(to+s)(i) 
_ 

vs(t)(t?+ 
)(n) ~gs(to+s)(n) 

iOas t --0+ 

as t -- 0+, 

and by the additional condition on the t1 again, we obtain 

(4.13) D(j){v,(t)te+s} = O(tje+s-n) = O(D(j){to+s}) as j -- 00, 

the last equality being a consequence of (4.9). Here we assume that g, = 0 without 
loss of generality. By substituting (4.13) in (4.12), the result in (4.11) follows. This 

completes the proof. O 

Theorem 4.3. Let ?p(t) and B(t) be exactly as in Theorem 4.1, and choose the t1 
as in Lemma 4.2. Then A() - A has the complete asymptotic expansion given in 

(3.11) and hence satisfies the asymptotic equality in (3.12) as well. Furthermore, if 
On+, is the first nonzero Oi with i > n, then for all large j there holds 

(4.14) 

1(tj)J t+" < IA) 
- Al < A20(tj)l t+, for some Q1 > 0 and 22 > 0, 

whether n > -R6 or not. 

Proof. The proof of the first part can be achieved by applying Lemma 4.2 to B(t) 
and to b(t) - 1/p(t). The proof of the second part can be achieved by employing 
(4.9) as well. We leave the details to the reader. Ol 

Remark. It is important to make the following observations concerning the behavior 

of A(j - A as j - 
oo in Theorem 4.3. First, any column sequence {A(j)I}= 

converges at least as quickly as (or diverges at most as quickly as) the column 

sequence {A 1} j=0that 
precedes it. In other words, each column sequence is at 
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least as good as the one preceding it. In particular, when /3m 0 but 3m+1 = = 
0s-1 = 0 and ps O0, we have 

(4.15) Ai) - A= o(AQ - A) asj -oo, m + 1 <n <s, 

A(j) -A = o(A(j) - A) as j - oo. s8+l 

In addition, for all large j we have 

( 0,1iA) 
-- 

A l < JA) - Al 
<_ 

0n21AP) - Al, 
(4.16) m + 1 < n < s - 1, for some 0nI, On2 > 0, 

which implies that the column sequences {A}(j 
=, 

m + 1 < n < s behave the 
same way for all large j. 

In the next sections we continue the treatment of Process I by restricting the tl 
further, and treat the issue of stability for Process I as well. In addition, we treat 
the convergence and stability of Process II. 

5. ANALYSIS WITH 
liml-- 

(tl+l/tj) = 1 

5.1. Process I with p(t) = t6H(t) and complex 6. 

Theorem 5.1. Assume that (p(t) and B(t) are exactly as in Theorem 4.1. In ad- 

dition, choose the t1 such that 

liml,_-(t+lI/t,) 

= 1. Then A$() - A has the complete 
asymptotic expansion given in (3.11) and satisfies (3.12) and hence satisfies also 
the asymptotic equality 

(5.1) A 
- A 

(-1) )nPn+,p(tj)t't+ 
as j 

--+C 
, 

where, again, ~n+, is the first nonzero /i with i > n in (1.2). This result is valid 
whether n > -R6 or not. In addition, Process I is unstable, i.e., supj F) = co. 

Proof. First, Theorem 4.3 applies and thus (3.11) and (3.12) are valid. 
Let us apply the Hermite-Gennochi formula of Lemma 3.6 to the function t', 

where a may be complex in general. By the assumption that lim-oo(ti+l/ti) = 1, 
we have that the argument z = -E=o itj+i of the integrand in Lemma 3.6 satisfies 
z - tj as j -+ oc. As a result, we obtain 

(5.2) D(J){t} ( t-n as j - oo, provided a # 0,1,..., n- 1. n (n) 

Next, applying Lemma 4.2 to B(t) and to O(t) - 1/~(t), and realizing that 

V(t) ~. 
E•0 oit-6+i as t --+ 0+ for some constants 4i with 0o = ho1, and using 

(5.2) as well, we have 

(5.3) 

D(J){B(t)} j 
/iD(){ti} 0,+,D(J){tn+"t} ~ n + 

n+tt! 
as j -- oc, 

i=n+n 
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and 

(5.4) 

D(J)f{o(t)} 
, 

E*iD(J){t-b+i} 

' 
holD(J ){t-} ( n (t)t-n as j - c. 

i=0 

The result in (5.1) is obtained by dividing (5.3) by (5.4). 
For the proof of the second part we start by observing that when limo, (t1+1/t1) 

= 1 we also have limj,--(tj+k/tj+i) = 1 for arbitrary fixed i and k. Therefore, for 
every c > 0, there exists a positive integer J, such that 

(5.5) ltj+i - tj+k- 1 - 
tj+k tj+i < tj+i j for 0 < i, k < n and j > J. 
tj+i 

As a result of this, 

(5.6) 
1- 

> (ctj) for i = 0, 1, ... ,n, and j > J. m 
i ~k=O tj+i - tj+kI k yl- 

Next, by the assumption that H(t) r ho as t -- 0+ and by limj,,(tj+i/tj) - 1, 
we have that 0(tj+i) r ,(tj) as j - 00c, from which |b(tj+i)l > Kj|ll(tj)j for 
0 < i < n and all j, where K1 > 0 is a constant independent of j. Combining this 
with (5.6), we have 

(5.7) c Ic)| 0(tj+i)) 
? K,(n + 1)(t,)-n )l(t,)l 

for all j > J. 
i=0 

Similarly, ID(){(0(t)} I K2l (tj) tIn for all j, where K2 > 0 is another constant 

independent of j. (K2 depends only on n.) Substituting this and (5.7) in (1.7), we 
obtain 

(5.8) 
F(j) Me~-6 for all j > J, with Mn = (K1/K2)(n + 1) independent of E and j. 

Since e can be chosen arbitrarily close to 0, (5.8) implies that sup F(j) 
= co. 

-- 

Obviously, the remarks following Theorem 4.3 are valid under the conditions of 
Theorem 5.1 too. In particular, (4.15) and (4.16) hold. Furthermore, (4.16) can 
now be refined to read 

A(J) - A , On(Aj) - A) as j -+ oo, m + 1 n s - 1, for some O8n 0. 

Finally, the column sequences {A(nJ}o0 with n > -R6 converge even though 
they are unstable. 

In Theorem 5.3 below we show that the results of Theorem 5.1 remain unchanged 
if we restrict the t1 somewhat while we still require that 

limjl-'(tl+l/ti) 
= 1, but 

relax the conditions on p(t) and B(t) considerably. In fact, we do not put any 
differentiability requirements either on p(t) or on B(t) this time, and obtain an 

asymptotic equality for Fj) in addition. 
The following lemma that is analogous to Lemma 4.2 will be of use in the proof 

of Theorem 5.3. 
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Lemma 5.2. Let g(t) --E'o gi te+i as t -- 0+, where go # 0 and 0 is in general 
complex, and let the tl satisfy 

(5.9) 
tj r cl-q and t1 - t1+l ~ cpl-q-1 as I -- oo, for some c > 0, p > 0, and q > 0. 

Then the following are true: 

(i) The nonzero members of {Df 
){to+i}}=o 

form an asymptotic sequence as 
j(ii) D (t) has the bona fde asymptotc epansion0. 

(ii) D(j){g(t)} has the bona fide asymptotic expansion 
00 

(5.10) D(J){g(t)} -E*giD(J){to+i} as j - 00o, 
i=O 

where the star on the summation means that only those terms for which 

D(){te+i} # 0, i.e., for which 0 + i # 0,1,..., n - i, are taken into ac- 
count. 

Remark. Note that 
liml--,,(t+l/ti) = 1 under (5.9), and that (5.9) is satisfied by 

tl = c(l + r)-', for example. Also, the first part of (5.9) does not necessarily imply 
the second part. 

Proof. Part (i) is true by Lemma 4.2 since liml,,(+tli/ti) = 1. In particular, (5.2) 
holds. To prove part (ii) we need to show in addition that, for any integer s for 
which D(j){to+s} 0, there holds 

s-i 

(5.11) D) {g(t)} - giDj) {to+i} 0 (D( ){to+S}) as j - 00oo. 
i=O 

Now g(t) = 
•iolgite+i 

+ Vr(t)tO+m, where 
Ivm(t)l 

< Cm for some constant 
Cm > 0 and for all t sufficiently close to 0, and this holds for every m. Let us fix s 
and take m > max{s + n/q, -RO}. We can write 

s-1 m-1 

(5.12) D(J){g(t)} 
= 

EgiD(j){to+i) + E giD(j){to+i} + D(J){vm(t)to+ml. 
i=O i=s 

Let us assume without loss of generality that gs Z 0. Then by part (i) of the lemma 

m--1 

Z 
giDn){t6+i} 

gsD {t+ g t5 as j - -00. 
i=s 

Therefore, the proof will be complete if we show that D(){vm(t)t+'m}= O (t- o ") 
as j -* o. Using also the fact that tj+i r tj as j -+ oo, we first have that 

(5.13) 
ID(J){vm(t)to+m}~nl< 

Cm S c$ Jto+m ? Cmt6o+m C(j) . 
i=O0 i-=0 

Next, from (5.9) 

(5.14) tj+i - tj+k cp(k - i)j-q-1 p(k - i)j-ltj as j - 
00oo, 
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as a result of which, 

(5.15) 
n. n 

( )n c)= 1 
(n1)i 1 ( ( and Ic) 1 2j 

k=ni tj+i - tj+k 
n! 

Ptj 
an E 

Icp i=0 
kai 

as 
j-- oo. 

Substituting (5.15) in (5.13) and noting that (5.9) implies j ~ (tjl/c)-1/ as j -0 oc, 
we obtain 

(5.16) D(j){vm(t)te+m} 
= O(t O+m-n-n/q) 

= O(tfO+s-n) as j 
-- 

oo, 

by the fact that RO + m - n - n/q > RO + s - n. The result now follows. O 

Theorem 5.3. Assume that (p(t) = t6H(t), with 6 in general complex and 6 - 

0, -1, -2,... , H(t) r- i=E hit' as t - 0+ and B(t) E iti as t - 0+. Let 

us pick the t1 to satisfy (5.9). Then Aj)- A has the complete asymptotic expansion 
given in (3.11) and satisfies (3.12), and hence satisfies also the asymptotic equality 
in (5.1). In addition, Fj) satisfies the asymptotic equality 

(5.17) Fr 1 j) asj- 
2o. 

n 

1(0) nI P a 

That is to say, Process I is unstable. 

Proof. The assertion concerning Aj) can be proved by applying Lemma 5.2 to B(t) 
and to 0(t) - 1/p(t), and proceeding as in the proof of Theorem 5.1. 

We now turn to the analysis of 
Fr). 

To prove the asymptotic equality in (5.17), 
we need the precise asymptotic behaviors of En=0 c I |(j)j(tj+i)j and D(jni {(t)} as 
j -+ o0. By (5.15) and by the fact that 0/(tj+i) r V(tj) as j -- oo for all fixed i, 
we obtain 

nn j( 
(j) ((t) as j . (5.18) c) i )I(t+) ~ Cn i I (tj)l ~ 

n0(t-• 
as j -+0. 

i= 0 i=-0 

Combining now (5.18) and (5.4) in (1.7), the result in (5.17) follows. D 

So far all our results have been on Process I. What characterizes these results is 
that they are all obtained by considering only the local behavior of B(t) and p(t) as 

t -+ 0+. The reason for this is that A$) is determined only by a(tj), j < 1 < j + n, 
and that in Process I we are letting j -- oc or, equivalently, tl -4 0, j < 1 < j + n. 
In Process II, on the other hand, we are holding j fixed and letting n --- oc. This 

means, of course, that A$) is being influenced by the behavior of a(t) on the fixed 
interval (0, tj]. Therefore, we need to employ global information on a(t) in order 
to analyze Process II. It is precisely this point that makes Process II much more 
difficult to study than Process I. 

An additional source of difficulty when analyzing Process II with p(t) = t6H(t) 
is complex values of 6. Indeed, except for Theorem 6.2 in the next section, we do 
not have any results on Process II under the assumption that 6 is complex. Our 
analysis in the remainder of this section assumes real 6. 
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5.2. Process II with p(t) = t. We now would like to present results pertaining to 
Process II. We start with the case po(t) = t. Our first result concerns convergence 
and follows trivially from Lemma 3.4 as follows: Assuming that B(t) E C' [0, tj] 
and letting 

(5.19) IIB(n)l = max IB(n)(t)l 
O<t<tj 

we have 

D$?{ B(t)I} IiB() ( r | |1 (5.20) 
D(J)t-1< n! tj+i , 
D.n{t-} i=0 

from which we have that 
limn--o A) = A when ?p(t) = t provided that 

1B(") () a- (5.21) = o t i as n -+oo. 
i=0 

In the special case tl = c/(l + q)q for some positive c, r, and q, this condition reads 

(5.22) IIB(n)|- = 
o((n!)q+lc-nn(j+ri)q) 

as n oo. 

We are thus assured of convergence in this case under a very generous growth 
condition on JIB(n) II, especially when q > 1. 

Our next result in the theorem below pertains to stability of Process II. 

Theorem 5.4. Consider ?p(t) = t and pick the ti such that liml,,((ti+l/t) = 1. 
Then Process II is unstable, i.e., 

supn F) = o. If the tl are as in (5.9), then 

Fn) - ooc as n -- 00 faster than n" for every a > 0. If, in particular, tl = c/(1 + r)q 
for some positive c, rq, and q, then 

(5.23) 
qn 

(5.23) for some >0j) , q>--1,2. 
n q ( q) 

Proof. We already know that when (t) = t we can compute the (j) by the 
recursion relation in (3.4), which can also be written in the form 

(j) w iJ)=tiln <1. (5.24) 
•I) 

+ (j) (j (ji+l)r tj+ 
n 

- --1 
- 

() n--1- n--1tj 
< 1. 1 - 

Wn 

Hence, 

(5.25) 

Fn) 

> 
F(j+l) r> 

(j+2) 
n - 

n-- 
n-2 

from which ) > Fj+-s) for arbitrary fixed s. Applying now Theorem 5.1, we 
have 

limn-+•o 

r(+n-s) = oc for s > 1 from which 

limn•- 
inj) 

= oc follows. When 

the tl are as in (5.9), we have from (5.17) that F(j+n-s) 1 
) ns as n -+ 00. 

From this and from the fact that s is arbitrary, we now deduce that F) -- 00 as 
n -- oc faster than n~ for every a > 0. To prove the last part we start with 

n 

(5.26) () 
tj+k , i 0,1,. . . 

, =, tj+k - tj+i 
koi 

that follows from (1.6) and (3.7). The result in (5.23) follows from / ) > lyi l. O 
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We can expand on the last part of Theorem 5.4 by deriving upper bounds on 

Fj) when tz = c/(1 + r1)' for some positive c, rl, and q. In this case, we first show 

that w(j+l) 
>_ 

wj) from which we can prove by induction and with the help of 

(5.24) that F(j) 
_ 

F(j+l). Using this in (5.24), we obtain the inequality F) 
r-I [(1 + wi+)/(1 - w$?)], and, by induction, 

(5.27) F (J) n) 1 + 
n--+ 

i n 0 
i=o 1 

-wni 
Finally, we set +) = 1 and bound the product in (5.27). It can be shown that 

when q = 2, F() - O(n-1/2(e2/3)n) as n oc00. This result is due to Laurie [Lauri]. 
On the basis of this result Laurie concludes that the error propagation in Romberg 
integration with the harmonic sequence of stepsizes is relatively mild. 

5.3. Process II with p(t) = t6H(t) and real 6. We now want to extend Theorem 
5.4 to the general case in which ?p(t) = t0H(t), where 6 is real and 6 : 0, -1, -2,... 
and H(t) E C"0[0, tj] with H(t) / 0 on [0, tj]. In order to do this we need additional 

analytical tools. We shall make use of these tools in the next sections as well. The 
results we have obtained for the case p(t) = t will also prove to be very useful in 
the sequel. 
Lemma 5.5. Let 61 and 62 be two real numbers and 6 1 62. Define Ai(t) 
t- 6, i = 1,2. Then, provided 61 f 0,-1,-2,..., 

D,){A2 (62)n D2D-in 
D) 

{ 
A1(t)} 

for some 
tn, 

G 
(tj+n,tj). 

Dn ) 
I 

(61)nt 
Corollary 5.6. Let 61 > 62 in Lemma 5.5. Then for arbitrary {tt} 

(2)nI - 

Dj• 
I A (t)} I 

(• 
i 2)n 

61- 
(61)n 

•j+n 
- iD(J){A (t)}| (1l)n j 

from which we also have 

ID({A2(t)l < Kn 2-61 
61- 

2 - o(1) as j -oo and/or as n - oc, 

ID(j) 

{AI(t)} for some constant K > 0 independent of j and n. Consequently, for arbitrary real 

0 and arbitrary {ti}, the nonzero members of {D(J) {t6+i}}=o form an asymptotic 
sequence as j -+ oo. 

For the proofs of these results see [Si6]. 
The next lemma expresses F(j) and A(j)- A in factored forms. By analyzing 

each of the factors it becomes easier to obtain good bounds from which powerful 
results on Process II can be obtained. 

Lemma 5.7. Consider p(t) = t6H(t) with 6 real and 6 $ 0, -1, -2,.... Define 

DP {ft-1}D(J) {t-6} (5.28) X = D {t-l} and Y 
= D(J){t-1} n D(J{ft-/H(t)} 

Define also 

(1 Z} 
ci 

tQtsi . 
(5.29) FU)(6) - D= 

I){t}j 
i= 
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Then 

(5.30) 
f(nJ)(6) 

= 

|IX)l(jn)l -f(n 
)(1) for some 

tjn 
E (tj+,, tj), 

(5.31) F(j) = Yn(j) IH(tjn) -lF)(6) for some 
t, 

E (tj+,, tj), 

and 

D$(J{B(t)} (5.32) AM) - A = X(j)Y D (n 
) } 

In addition, 

(5.33) X () n (tin) 
for some tjn E 

(tj+n, 
tj), 

These results are valid for all choices of {tz }. 

Proof. To prove (5.30) we start by writing (5.29) in the form 

ID() 
= X ) 

t-1}+i t + nx J 

I(){t1li=0 
The result follows by observing that, by continuity of t1-6 for t > 0, 

ci ij+i 
i (tj) for some t, c (tj+, t), 

i=-0 i=O0 

and by invoking (5.29) with 6 = 1. The proof of (5.31) proceeds along the same 
lines, while (5.32) is a trivial identity. Finally, (5.33) follows from Lemma 5.5. O 

In the next two theorems we adopt the notation and definitions of Lemma 5.7. 
The first of these theorems concerns the stability of Process II, while the second 
concerns its convergence. 

Theorem 5.8. Let 6 be real and 6 : 0, -1, -2,... , and let the t1 be as in (5.9). 
Then the following are true: 

(i) Fnj)() - oc faster than n" for every a > 0, i.e., Process II for p(t) - t0 is 
unstable. 

(ii) Let p(t) = tbH(t) with H(t) C C~ [0, tj] and H(t) 7 0 on [0, tj]. Assume that 

(5.34) IY,) |J Cinal for all n; C1 > 0 and a1 constants. 

Then FU) -- oc as n -- oc faster than n" for every a > 0, i.e., Process II is 
unstable. 

Proof. Substituting (5.33) in (5.30), we obtain 

6-(5.35) ( 1 

(5.35) U) (6) = n i (1) 

Invoking the asymptotic equality 

(a>, r(b) F(n + a) F(b) a-b 

(b)n (a) F(n + b) F(a) s 
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in (5.35), we have for all large n 

(5.36) n )(6) 
-> K(6)n'-tj+n) )(1) for some constant K(6) > 0. 

Now t -1. 
cl-11-nq1_1 

as n -+ 00 and, by Theorem 5.4, (j)P(1) -- 00 as 

n - 
c0 faster than n" for every a > 0. Consequently, f(J) (6) -4 oo as n -0+o 

faster than n" for every a > 0 as well. The assertion about I) can now be proved 
by using this result in (5.31) along with (5.34) and the fact that IH(tjn)l-1 

(maxtE[o,tj] IH(t)l)-1 > 0 independently of n. O 

The purpose of the next theorem is to give as good a bound as possible for A(j) - 

Al in Process II. A convergence result can then be obtained by imposing suitable 
and liberal growth conditions on 

|IB("n)[ 
and Y(j) and recalling that D() {t-1} 

(-1)n/ (nl•0 tj+i) 

Theorem 5.9. Assume that B(t) E C"[O, tj] and define IIB(")II as in (5.19). Let 
p(t) be as in Theorem 5.8. Then, for some constant L > 0, 

(5.37) 

JAM)-nA 

5 
L?lY(J), 

max t6-1) n1-6 IIB(n) (I .t ) n 
(tE[tj+n,tj] n r j+i i=0 

We note that it is quite reasonable to assume that Y(j) is bounded as n -* 0o. 
The "justification" for this assumption is that Y(j) = 

A(n)(t>n)/,(n)(t",) 

for some 

t , and ti E (tj+n, t), where A(t) = t- and /(t) = 1/p(t) = t-6/H(t), and that 

A(n)(t)/O(n)(t) r H(O) as t - 0+. Indeed, when 1/H(t) is a polynomial in t, we 
have precisely D(j){t-6/H(t)} , D(j) {t-}/H(O) as n - 00o, as can be shown with 

the help of the corollary to Lemma 5.5 from which YJ) ~ H(O) as n -- 00. See also 
Lemma 7.5. Next, with the tz as in (5.9), we also have that (maxtE[t3+n,tj] t6-1) 

grows at most like n41-11 as n -* 00. Thus, the product Y(j) I(maxtE[tj+n,tj] t6-1) 
in (5.37) grows at most like a power of n as n -+ oc, and, consequently the main 
behavior of IA(j) - Al as n -- 00 is determined by (lIB(n)ll/n!) ( n=o tj+i). We also 
note that the strength of (5.37) is primarily due to the factor R~ 0 tj+i that tends 
to zero as n - 0 o essentially like (n!)-q when the tl satisfy (5.9). We recall that 
what produces this important factor is Lemma 5.5. 

6. ANALYSIS WITH 
liml--,,(t+l/tl) 

= W E (0, 1) 

As is clear from our results in Section 5, both Process I and Process II are unsta- 
ble when p(t) is slowly changing and the ti satisfy (5.9) or, at least in some cases, 
when the t1 satisfy even the weaker condition 

liml-,o(t1l+/t1) 
= 1. These results 

also show that convergence will take place in Process II nevertheless under rather 
liberal growth conditions for B(n) (t). The implication of this is that a required level 
of accuracy in the numerically computed A(j) may be achieved by computing the 
a(ti) with sufficiently high accuracy. This strategy is quite practical and has been 
employed successfully in numerical calculation of multiple integrals. 

In case the accuracy with which a(t) is computed is fixed and the A( ) are 
required to have comparable numerical accuracy, we need to choose the tl such 
that the Aj) can be computed stably. When (p(t) = t6H(t) with H(0) - 0 and 
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H(t) continuous in a right neighborhood of t = 0, best results for A•) and F ) are 
obtained by choosing {tt } such that ti -- 0 as 1 -- oc exponentially in 1. There are 
a few ways of achieving this and each of them has been used successfully in various 
problems. 

Our first results with such {tt } given in Theorem 6.1 below concern Process 
I and, like those of Theorems 5.1 and 5.3, they are best asymptotically. These 
results were given as Theorems 2.1 and 3.1 in [Si6], which in turn, are special cases 
of Theorems 2.2 and 2.4 in [Si5]. 

Theorem 6.1. Let ,p(t) = t6H(t) with 6 in general complex and 6 0, -1, -2,... 
and H(t) r H(O) 0 as t -+ 0+. Pick the ti such that 

liml,,-(tl+l/ti) 
= w for 

some fixed w E (0, 1). Define 

(6.1) ck +k-1, k =1, 2, . 

Then, for fixed n, (3.11) and (3.12) hold, and we also have 

(6.2) AO) - n+A Cn+ -1 - Ci 
y(t)tn as -+ oo, n 1 - ci 

where ,/+, is the first nonzero /i with i > n in (1.2). This result is valid whether 
n > -R~ or not. Also 

n n n 

(6.3) lim 
y)zn 

i Z 
= cPniz 3-+00 1 -i c z ' i=O i=1 i=O 

so that 

limj_,-o 

F exists and 

(6.4) lim FU) = n 1 + ci 

j-•0 i1 
- ci i=O i= 1 

hence Process I is stable. 

We note that Theorem 6.1 is valid also when p(t) satisfies p(t) r hot6' log t1 
as t -* 0+ with arbitrary y. Obviously, this is a weaker condition than the one 
imposed on p(t) in the theorem. 

Upon comparing Theorem 6.1 with Theorem 5.1 we realize that the remarks 
that follow the proof of Theorem 5.1 and that concern the convergence of column 
sequences are valid without any changes also under the conditions of Theorem 6.1. 

So far we do not have results on Process II with p(t) and {t1} as in Theorem 
6.1. We are able to provide some analysis for the cases in which 6 is real, however. 
This is the subject of the next section. 

We are able to give very strong results on Process II for the case in which {t } 
is a truly geometric sequence. The conditions we impose on p(t) in this case are 
extremely weak, in the sense that p(t) = t6H(t) with 6 complex in general and 
H(t) not necessarily differentiable at t = 0. 

Theorem 6.2. Let p(t) - t6H(t) with 6 in general complex and 6 5 0, -1, -2,... 
and H(t) = H(O) + O(te) as t -- O+, with H(O) # 0 and 0 > 0. Pick the ti such 
that ti = tow1, 1 = 0, 1,... , for some w E (0, 1). Define ck = - +k-w1, k = 1, 2,... . 
Then, for any fixed j, Process II is both stable and convergent whether limt-.o+ a(t) 
exists or not. In particular, we have limn,,, A(j) = A with 

(6.5) A) - A =- O(wan) as n -+ oc, for every o > 0, 
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and 
supFn f) 

< oc with 

01+|ci 
<00. (6.6) lim Fr) = 
< 

00. 
n-- o1 -ci i= 1 

The convergence result of (6.5) can be refined as follows: With B(t) E C[0, t~ for 
some t > 0, define 

(6.7) s = max B(t) - I /o /ts , s= 
O, 1,... tE[O,t] i=O0 

or when B(t) E Co [0, t~, define 

(6.8) 3s = max (IB(")(t)l/s!), s = 0, 1, ... tE[o,ti 

If 3n or 13 is O(ean") as n -- 00 for some a > 0 and 7 < 2, then, for any e > 0 
such that w + e < 1, 

(6.9) 
A(n) 

- A =o ((w+e)n2/2) as n-. 

We refer the reader to the paper Sidi [Si7] for the proofs of the results in (6.5), 
(6.6), and (6.9). 

We would like to make the following observation about Theorem 6.2. We first 
note that all the results in this theorem are independent of 0, i.e., of the de- 
tails of (p(t) - H(O)t6 as t -*0+. Next, (6.5) implies that all diagonal sequences 

{A(}n=O, j 
- 0, 1,... , converge, and the error A() - A tends to 0 as n -- 00 

faster than e-An for every A > 0, i.e., the convergence is superlinear. Under the 
additional growth condition imposed on 

n 
or 

On 
we have that A(j) - A tends to 

0 as n -+ 00 at the rate of e-"n2 for some K > 0. Note that this condition is very 
liberal and is satisfied in most practical situations. It holds, for example, when On 
or p, are O( (pn)!) as n -- co for some p > 0. Also, it is quite interesting that 

limn_+oo 

Fj) is independent of j, as seen from (6.6). 
Finally, we note that Theorem 6.1 pertaining to Process I holds under the con- 

ditions of Theorem 6.2 without any changes as liml,,(tl+l/tl) = w is obviously 
satisfied since tl+l/tl = w for all 1. 

7. ANALYSIS WITH REAL 6 AND tl+1/tl < w E (0, 1) 

In this section we would like to consider the convergence and stability properties 
of Process II when {tI } is not necessarily a geometric sequence as in Theorem 6.2 or 

lim1--, 
(tl+l/t1) does not necessarily exist as in Theorem 6.1. We are now concerned 

with the choice 

(7.1) ti+l/tz 
? 

w, I = 0, 1,... , for some fixed w E (0, 1). 

If liml,, (tl+l/tl) = A for some A E (0, 1), then given e > 0 such that w = A+e < 1, 
there exists an integer L > 0 such that 

(7.2) A - e < t1+i/tz < A+ E for all 1 > L. 

Thus, if to, tl,... , tL-1 are chosen appropriately, the sequence {ti} automatically 
satisfies (7.1). Consequently, the results of this section apply also to the case in 
which 

liml,,-(tl+l/tl) 
A E (0, 1). 
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7.1. The case yp(t) = t. The case that has been studied most extensively under 
(7.1) is that of p(t) = t, and we will treat this case first. The outcome of this 
treatment will prove to be very useful in the study of the general case. 

We start with the stability problem. As was done in Lemma 5.7, we shall denote 
the F(j) corresponding to p(t) = t6 by F (j) (6), and its corresponding -y) by (j) (6). 
Theorem 7.1. With (p(t) = t and the ti as in (7.1), we have for all j and n 

nin i i 
(7.3) 

(J) 
(1) =E (,) (1) < A 1 < i 1 < Co . 

i=0 i=1 i=l1 

Therefore, both Process I and Process II are stable. Furthermore, for each fixed i, 
we have limn-, oo (1) O0, with 

(7.4) U)(1) -= O(wn2/2+din) as n - Oo, di a constant. 

Proof. Let t = tow1, 1 = 0, 1,... , and denote the 7y) and Fj) appropriate for 

p(t) = t and the tl, respectively, by 7i and . By (5.26), we have that 

(7.5) 
() 

1 1 

5ni 
(1) l 1 - tj+i/tj+k =i+ tj+ij+k -1 

<-1 1 - wi-k wi- - 1 
k=0 k=i+l 

k=0 

1 - j+i/tj+k 
k=i+1t +ij+k- 

1 \k= 1~~ 

Therefore, i(• (1) < (nj). But rj 
- 

An 
by Theorem 2.1 in [Si7]. The relation in 

(7.4) is a consequence of the fact that 

(7.6) 
)l 

(1 - ck ) Ck, Ck _i , 
k= 1 1_k<-.<kn-i <n 

with ck = wk, k- 1, 2,... , that in turn follows from 
n n 

zYni -= f(z - ck)/(1 - Ck). 
i=O k=1 

We mention here that the fact that i') (1) is bounded uniformly both in j and 
in n was originally proved by Laurent [Laure]. The refined bound in (7.3) was given 
without proof in [Si6]. 

Now that we have proved that Process I is stable, we can apply Theorem 3.5 
and conclude that 

limj,,o A$) = A with 

(7.7) A(j) - A = 
O(t.+"+1) 

as j --+ o, 

without assuming that B(t) is differentiable in a right neighborhood of t = 0. 
Since Process II satisfies the conditions of the Silverman-Toeplitz theorem, see, 

e.g., Hardy [H] or Powell and Shah [PS], we also have 
limn-o, 

A) - A. We now 
turn to the convergence issue for Process II to provide realistic rates of convergence 
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for it. We start with the following important lemma due to Bulirsch and Stoer 
[BS]. The proof of this lemma is very lengthy and difficult and we, therefore, refer 
the reader to the original paper. 

Lemma 7.2. With po(t) = t and the t1 as in (7.1), we have for each integer s E 
{0, 1, .. , n} 

n n 

(7.8) Z| )(1) 
t• - 

M f 
tjt+k i=O \k=n-,s 

for some constant M > 0 independent of j, n, and s. 

This lemma becomes very useful in the proof of the convergence of Process II. 

Lemma 7.3. Let us pick the tl to satisfy (7.1). Then, with j fixed, 

IDj) {B(t)}| (7.9) = 
- O(wn) as n -- oo, for every a >0. 

ID) {{t-} 
This result can be refined as follows: Define Ps exactly as in Theorem 6.2. If 

=n = O(ean") as n -+ oc for some a > 0 and 7 < 2, then, for any e > 0 such that 
w+E < 1, 

(7.10) D 
B(t) = O( (w E)n2/2)as n 

-- 
. 

ID() {t-} 

Proof. From (3.9) we have for each s < n 

(7.11) 

Qj1 
Dn{B(t)}| 

l )(1) 1Es(tj+i) tj+i; Es(t) B(t) - sitk 
|D({t-1} i=0 kZ=0 

By (1.2) there exist constants l, > 0 such that E,(t) < q7,ts when t E [0, t~ for some 
t > 0 and also when t = tl > t (note that there are at most finitely many t1 > t). 
Therefore, (7.11) becomes 

n n 

(7.12) QU) < 7 . 
( s+1 i=O k--n-s 

the last inequality being a consequence of Lemma 7.2. The result in (7.9) follows 
from (7.12) once we observe by (7.1) that 

H•=n-s 
tj+k = O(wn(+l)) as n -+ 0c 

with s fixed but arbitrary. 
To prove the second part we use the definition of ?3 to rewrite (7.11) (with s = n) 

in the form 

(7.13)(j)J(1) 
1 E(J+i) 

- ni 
( n(tj+i) tj+i 

nn 
E( .l tj+i>i 

tj+i<_i 

Since En(t) I B(t)+ 
n 

k k, Ikl I k for each k and 
0/n 

grows at most 
like e for 7 < 2, ~)(1) - O(wn2/2+din) as n -+ c from (7.4), and there are at 
most finitely many tl > t, we have that the first summation on the right-hand side 
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of (7.13) is O( (w + e)n2/2) as n -- oc, for any e > 0. Using Lemma 7.2, we obtain 
for the second summation 

Otn 
I I (1)1tn+l <(i=0 n+lO<M 

n I?Yni 
j+i 

-1)n 
j 

y+i Olty+ 
, 

tj+i t i=O i=0 

which, by (7.1), is also O( (w + e)n2/2) as n --+ oc, for any e > 0. Combining the 
above in (7.13), we obtain (7.10). Ol 

The following theorem is a trivial rewording of Lemma 7.3. 

Theorem 7.4. Let p(t) = t and pick the t1 to satisfy (7.1). Then, with j fixed, 
limn,,, A) = A, and 

(7.14) A) - A =- O(w"a) as n --oo, for every c > 0. 

This result can be refined as follows: Define 0, exactly as in Theorem 6.2. If 
On = O(e n") as n -+ oc for some a > 0 and 7 < 2, then, for any E > 0 such that 
w + e < 1, 

(7.15) A) - A = O( (w + ?)n2/2) as n - oo. 

Theorem 7.4 first implies that all diagonal sequences {A(J)}n}0o converge to A 

and that IAj)- AI -+ 0 as n -- 00 faster than e-An for every A > 0. It next implies 
that with a suitable and liberal growth rate on the 

/n 
it is possible to achieve that 

IAj) - Al -+ 0 as n - oo practically like e-Kn2 for some K > 0. 

7.2. The case (p(t) = tsH(t) with real 6 and tl+1/t < w E (0, 1). We now come 
back to the general case in which po(t) = tsH(t) with 6 real, 6 0, -1, -2,... , and 

H(t) r H(O) = 0 as t -- 0+. We assume only that H(t) E C[0,tt] and H(t) = 0 
when t E [0, t for some t > 0 and that H(t) r E' o hiti as t -- 0+, ho0 0. 

Similarly, B(t) E C[O, t] and B(t) r E=, L iti as t -- 0+, as before. We do not 
impose any differentiability conditions either on B(t) or H(t). Finally, unless stated 
otherwise, we require the tl to satisfy 

(7.16) v < ti+l/tz < w, 1 = 0, 1, ... , for some fixed v and w, O < v < w < 1, 

instead of (7.1) only. (We recall from the remark following the statement of Lemma 
4.2 that the additional condition, V < tz+1/tl, is naturally satisfied, for example, 
when 

liml-,,(t+li/ti) = A E (0, 1), cf. also (7.2). It also enables us to overcome 
some problems in the proofs of our main results). 

We start with the following lemma that is analogous to Lemma 4.2 and Lemma 
5.2. 

Lemma 7.5. Let g(t) 
'o0 

gCte+i as t - 40+, where go 0 and 0 is real, such 
that g(t)t-0 E C[0, t] for some t > 0, and pick the t1 to satisfy (7.16). Then the 
following are true: 

(i) The nonzero members of 
{D(J){to+i}}=o 

form an asymptotic sequence both 
as j -* oc and as n --oo. 

(ii) D(J){g(t)} has the bona fide asymptotic expansion 
00 

(7.17) D(){g(t)} -*giD"J)f{to+i} as j 00, 
i=O 
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where the star on the summation means that only those terms for which 

D(J){to+i} , O, i.e., for which 0 + i = 0, 1,..., n - 1, are taken into ac- 
count. 

(iii) When 0 Z 0, 1,..., n - 1, we also have 

(7.18) Dj) {g(t)} l goDj){te} as n --+ co. 

When 0 < 0, the condition in (7.1) is sufficient for (7.18) to hold. 

Proof. Part (i) follows from the corollary to Lemma 5.5. For the proof of part (ii) 
we follow the steps of the proof of part (ii) of Lemma 4.2. For arbitrary m we have 

g(t) = M-o1 gto+i + Vm(t)tO+m, where Ivm(t) < Cm for some constant Cm > 0, 
whenever t E [0, t~ and also t = t1 > t (recall that there are at most finitely many 
ti > t). Thus 

m-1 

(7.19) D(){g(t)} = giD(J){te+i} + 
D(){vm(t)te+m}" i=O 

We therefore have to show that D(j {vm(t)to+m} = O(D(j {tO+m}) as j - o00 when 
0 +m # 0, , 1... n - 1. 

By the fact that -0(1) = (j) c t i/D ){t-}, we have 
n 

(7.20) ID(j) {vm(t)te+ml (i c 
IVm(tj+i)l tj+i?Om 

i=O0 
n 

? 
Cm 

ID(nj) {t-1}, I ) (1)1 
YtO+m+l" i=O 

Now taking s to be any integer that satisfies 0 < s < min{0 + m, n}, and applying 
Lemma 7.2, we obtain 

(7.21) 

ni (1) m+s+l 
) 

tO+m-s < M 
tj+k 

+m-s 

i=0 i=0 k=n-s 

Consequently, under (7.1) only, 

(7.22) ID'J){vm(t)t?+ml <I 
MCm•Dn){t-1}l 

tj+k t+ms 
-k=n--s 

8 

Recalling that D){t-1} = (HI=o tj+k)-1 and t1+1 ?> vtj, and invoking (4.9) that 
is valid in the present case, we obtain from (7.22) 

(7.23) Dn) {Vm(t)to+m} = O(tjO- m-n) = O(Dj) {to+m}) as j -* oc. 

This completes the proof of part (ii). 
As for part (iii), we first note that, by the corollary to Lemma 5.5, 

m-1 

lim giD( ){tg+i}/D(J){to} = go. 
i=O 

Therefore, the proof will be complece if we show that 

lim D(J) {vm(t)t&+m}/D) {tO} = 
O. n--•*o) 
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By (7.22) we have 

(7.24) T ID ){m(t)t m M D(J){t j+ktm-s 
ID(j){tO}l IDt(j) {t l 

ti-n--s 

n j~tl \/~n, 

By the corollary to Lemma 5.5 again, 

(7.25) { < Kinl+ 
1 max t-1-O 

ID(nij)ftoll 
tE[tj+n,ti] 

and by (7.1), 

(7.26) jJ tj+k <? K2t tj+nwns 
k=n-s 

where Ki and K2 are some positive constants independent of n. Combining these 
in (7.24), we have 

(7.27) T < LV Inl+Ot+w"ns; V) = max 1-0 (7.27) T,(j) < 
LV(J~nl+Otj+nwnS; V,(j)- 

max t 
tE[tj+n.,tj] 

for some constant L > 0 independent of n. Now (a) for 0 < -1, Vj) - t1-, (b)for 
-1 < 0 < 0 

Vn(j) 
-1-o 

I-0 < - 1 n( 1+0) by 
S, tj+n , while (c) for 0 > 0, V) = tl t1 -n 

(7.16). Thus, (a) if 0 K -1, then Tj)- O(nl+otjnns) = o() as n o, (b) if 
-1 < 0 < 0, then Tj) O(nl+OtOw"ns) = o(1) as n -- o0, and (c) if 0 > 0, then 

T(j) - O(nl+0o-n(l+O)wns) - o(1) as n -* oc, provided we take s sufficiently large 
in this case, which is possible since m is arbitrary and n tends to infinity. This 
completes the proof. O 

Our first major result concerns Process I. 

Theorem 7.6. Let B(t), p(t), and {t1} be as in the first paragraph of this subsec- 

tion. Then A(j)- A satisfies (3.11) and (3.12), and hence A(j) -A = O(~(tj)t n+) 
as j -+ 00. In addition, supj Fn 

< o00, i.e., Process I is stable. 

Proof. The assertions about A) - A follow by applying Lemma 7.5 to B(t) and to 

b(t) = 1/p(t). As for Fn), we proceed as follows. By (5.30) and (5.33) and (7.16), 
we first have that 

- V6~ 
tj -11 

-(nj)( 
_ (7.28) (j) (6) < 

5n! 

tj 
1F (1 )n! n - 1(6sn (tjn) n - 

10 

By Theorem 7.1 it therefore follows that supj j) () < oo00. Next, by Lemma 7.5 

again, we have that Y 4) J ho as j o00, and IH(t)j-1 is bounded for all t close to 
0. Combining these facts in (5.31), it follows that supj Fj) < oo00. 

As for Process II, we do not have a stability theorem for it under the conditions 
of Theorem 7.6. (The upper bound on Fnj) (6) that is given in (7.28) tends to infinity 
as n - 0 o). We do, however, have a strong convergence theorem for Process II. 
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Theorem 7.7. Let B(t), <p(t), and {tz} be as in the first paragraph of this subsec- 
tion. Then, for any fixed j, Process II is convergent whether limt,o+ a(t) exists or 
not. In particular, we have 

limn, 
An) 

= A with 

(7.29) A0) - A = 
O(w•') 

as n -+oo, for every a > 0. 

This result can be refined as follows: Define 0, exactly as in Theorem 6.2. If 
=n = O(eanl) as n -+ oc for some a > 0 and T < 2, then for any e > 0 such that 

w+e<1 

(7.30) AO) - A = O( (w + e)"2/2) as n -- o. 

When 6 > 0, these results are valid under (7.1). 

Proof. First, by (5.28) and part (iii) of Lemma 7.5, we have that Y(J) H(O) as 
n -- oc. The proof can now be completed by also invoking (5.33) and Lemma 7.3 
in (5.32). We leave the details to the reader. O 

8. PRACTICAL CONCLUSIONS 

We have analyzed the convergence and stability of GREP(1) for slowly varying 
functions a(t) with different types of collocation sequences {t }. From the stability 
analyses we have given we can derive the following practical conclusions on how we 
can use GREP(1) in these cases. 

In case we must stick with the choice of the t1 as in (5.9), and cannot allow 
a fast growth as in (7.1), we have seen that GREP(1) is not stable. In this case 
we can avoid the problem of loss of accuracy by doing all of our computations 
in high-precision floating-point arithmetic, if this is possible, as explained in Sidi 

[Si8]. It is also clear from Theorem 5.3 that (j), in spite of being unbounded as 
j -4 oc, is small when |II| is large since it is proportional to 1/l(6)n|. In this case 

IAj) 
- Al is small as well since it too is proportional to 1/l(6)nI as j -- oc0. Thus, 

when I~361 is large, we may be able to obtain high accuracy in the A(j) despite 
the fact that the extrapolation process is definitely not stable. In the case of the 
d(l)-transformation, for example, we can ensure that the t1 satisfy (5.9) by choosing 
tj = 1/R1, R1 = (1+ 1), 1= 0, 1,... 

When we are able to choose the tj as in (7.1), we can attain high accuracy and 
good stability properties in GREP(1), as we have seen in Sections 6 and 7. (Nu- 
merical experience seems to suggest that more stability is achieved by decreasing 
w in (7.1).) Now in most practical situations, as t --+ 0+, either the computational 
effort spent in obtaining a(t) increases drastically or the computation of a(t) be- 
comes prone to roundoff error. Therefore, we must make sure that the t1 do not 
decrease too quickly with 1. This can be achieved by choosing w not too small. For 
the d(1)-transformation on infinite series this can be achieved by letting t1 = 1/R1, 
where R1 are positive integers determined, for example, as in 

(8.1) Ro = 1, Rl = [aRi_1J + 1, 1 = 1,2,...., a > 1 some constant. 

(Note that when a = 1, we will have R1 = 1 + 1 for all 1, in which case the d(1)- 
transformation reduces to the Levin u-transformation.) It is easy to see that, with 
tj = 1/R, and w = a-1 < 1, the tj satisfy wti/(1 + wti) < t1+i < wt1 for all 1. We 
thus have a sequence of ti's that satisfy vti < t1+l ?< wt, with some v < w, and 
hence decrease like wl. In addition, they satisfy liml,,(tl+l/tl) = w. (Therefore, 
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all the conclusions of Sections 6 and 7 are valid for the d(l)-transformation with 
these R1.) Note that since a(tl) = AR, for the d(l)-transformation, it is essential 
that 1/tz be integers that grow exponentially but in a mild fashion. As explained 
in [Si6], we can choose a [1.1, 1.5], for example. This provides us with a sequence 
of tj's that decrease exponentially but at a reasonable rate. Note that the choice of 
the R1 we have described here was first suggested in Ford and Sidi [FS]. 

We would like to end this work by recalling the following facts concerning the 
acceleration of convergence of the logarithmic sequences discussed in Examples 2.2 
and 2.3 by various well known methods. These sequences have formed a very active 
test ground for convergence acceleration methods. An extensive numerical study 
that included many known methods was carried out by Smith and Ford in [SF1] 
and [SF2]. These authors conclude in [SF1] that, as far as logarithmic sequences are 
concerned, the Levin u-transformation is the across-the-board winner, followed by 
the 0-algorithm of Brezinski [B]. Both transformations are prone to roundoff error 
propagation and hence are unstable. In other words, in finite-precision arithmetic, 
their accuracies increase up to a certain point only. Following that, they decrease 
and are destroyed completely. Another method whose performance is comparable to 
those of the u-transformation and the 0-algorithm is the p-algorithm of Wynn [W], 
but it works only when 

a0n 
r o -i-2 as n -+ oc, i.e., when y = -2, -3,... 

in Example 2.2. When y is not an integer in Example 2.2, it can be shown rig- 
orously that no convergence acceleration is achieved by the p-algorithm. That is, 
the p-algorithm has a very limited scope. We recall that the p-algorithm is derived 
from the continued fraction of Thiele [T] that is an elegant implementation of inter- 
polation by rational functions. On the other hand, as we mentioned in the previous 
paragraph, the d(l)-transformation with Ri as in (8.1) is stable and produces more 
accuracy without deterioration when applied to logarithmic sequences. This is the 
conclusion reached in the comparative numerical study of Van Tuyl [V] as well. See 
also the numerical results given in Example 5.1 and Table 5.1.2 of Sidi [Si6], where 
the d(l)-transformation is applied to the infinite series 

k=l kl1-10 with R1 as in 
(8.1) and a = 1.2. (This series diverges and its antilimit is ((-0.1+10i), where ((z) 
is the Riemann zeta function.) In quadruple-precision arithmetic (approximately 
35 decimal digits) this strategy achieves an accuracy of 29 significant figures, while 
the u-transformation achieves an accuracy of 22 significant figures. This suggests 
that, with such Rz, the d(l)-transformation is a most effective convergence acceler- 
ation method for logarithmic sequences in that it produces the highest accuracy in 
finite-precision arithmetic. 
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